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The occurrence of self-avoiding closed paths �cycles� in networks is studied under varying rules of wiring.
As a main result, we find that the dependence between network size N and typical cycle length is algebraic,
�h��N�, with distinct values of � for different wiring rules. The Barabasi-Albert model has �=1. Different
preferential and nonpreferential attachment rules and the growing Internet graph yield ��1. Computation of
the statistics of cycles at arbitrary length is made possible by the introduction of an efficient sampling
algorithm.
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Physics research into graphs and networks has begun to
provide a common framework for the analysis of complex
systems in diverse areas including the Internet, biochemistry
of living cells, ecosystems, and social communities �1–3�.
The graph representation of these systems as discrete units
coupled by links �nodes and edges� exhibits a large set of
scaling phenomena including power-law distributed number
of connections per node �4�, fractal dimension �5�, and hier-
archy of modules �6�. After observation and classification of
graph structure �7�, enhanced understanding of complex sys-
tems is gained by considering the interplay between structure
and dynamics. Few studies take into account the complete
scenario of mutual influence between an evolving network
and the states of the elements it connects: in the Internet, for
instance, the wiring between routers determines the dynamic
distribution of data traffic, which in turn drives an ongoing
adaptation of the wiring structure �8�. Many results have
been obtained for the reduced scenario of dynamics on a
fixed network with predefined characteristics. Large-scale
behavior of diffusion, synchronization, and the contact pro-
cesses on realistic networks is qualitatively different from the
solutions of the mean-field approximation or on periodic lat-
tices �9–11�.

Rather than dynamics on networks, we here consider dy-
namics of networks which is the complementary reduction of
the above scenario. We ask which local rules for establishing
connections between elements lead to which overall network
properties. Much of the previous work in this direction has
been focused on the scale-free nature of many natural and
technical networks �1�. The fraction of nodes with a given
number of edges, called degree k, decays as a power law,
P�k��k−� for large k. This scaling has been found to result
from preferential attachment of additional edges to elements
that are well connected already �4�.

Beyond the degree distribution, the identification of typi-
cal subnetworks reveals a nontrivial structure. Significantly
frequent subnetworks are called motifs �12�. The most atten-
tion has been given to the motif of three fully interconnected
nodes. An abundance of such triangles is taken as an indica-
tor of local organization and clustering �13�. The triangle is
the smallest element of the set of cycles that form a relevant
class of subnetworks. The full range analysis of cycles from
length three up to system size gives insight into network

structure at all scales. Previous work on cycles includes ap-
proximations for the system size scaling of the number c�h�
of cycles of length h for various types of artificial networks
�14–18�. It has been speculated �19� that for generic net-
works the distribution c�h� becomes sharply peaked in the
limit of large number of nodes, N→�. For the position of
the peak, an algebraic growth has been conjectured �h�
�N� with an exponent ��1 as the leading characteristic
�18�.

Verification of these fundamental conjectures, validity
checks of the analytical approximations, and comparisons
with real-world networks have been difficult so far, since an
efficient method for finding the length distribution of all
cycles in a given network has been lacking. The much more
modest computational task Hamilton cycle, to decide
whether a given graph of N nodes has at least one cycle of
maximal length N, falls into the class of NP-complete prob-
lems that are widely believed to be computationally intrac-
table. Probably no algorithm exists that solves the Hamilton
cycle in a number of steps that is bounded by a polynomial
in N �20�. Exact counting of all cycles is feasible only in
special cases, including planar graphs, cf. �21� and references
therein. In the general case, approximation by efficient sam-
pling appears to be the only possibility to numerically inves-
tigate long cycles. Taking a step in this direction, Rozenfeld
and co-authors have introduced a stochastic search for cycles
�19� as self-avoiding random walks on the network. Al-
though the method allows for a quick scan of cycles on small
networks, larger systems cannot be treated as the probability
of finding a given cycle is strongly suppressed with growing
cycle length.

Here we suggest an alternative method based on a
Markov-chain Monte Carlo algorithm. Cycles are treated as
discrete microstates of a physical system at equilibrium. El-
ementary transitions between cycles, the analogs of single
spin flips in a spin system, are defined as an addition or
removal of short detours with minimal change to cycle
length. By considering cycle length as energy, generic Monte
Carlo procedures from statistical mechanics become appli-
cable. Temperature is defined in the usual way and allows us
to tune the sampling on preferably long or short cycles. After
introducing the algorithm in detail, we test its accuracy for a
set of networks where the cycle length distribution is directly
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accessible for comparison. We apply the algorithm to models
of growing networks and find the growth exponent of the
mean-cycle length. Finally, we test scaling of the number of
cycles in the growing Internet.

The formulation of the algorithm uses the following basic
notions of cycle space. We treat a subgraph X as the set of
edges it contains. If X is a cycle, the cardinality �X� is the
cycle length. The sum of two subgraphs X and Y is defined as
X � Y = �X�Y� \ �X�Y�, i.e., an edge is contained in the sum
if it is in one of the addends but not in both. The sum X
� Y of two cycles X and Y is again a cycle if X and Y
intersect in a suitable way, see Fig. 1. We generate a Markov
chain of cycles �C0 ,C1 ,C2 , . . . � as follows. The initial con-
dition is the empty graph C0=0 at t=0. At each step a cycle
S is drawn at random from a set M of initially known cycles
�the choice of M is described below�. If the proposal C�
=Ct � S is a cycle or the empty graph, it is accepted with
probability

Paccept = min	exp�− ���C�� − �Ct���,1
 . �1�

In case of acceptance we set Ct+1=C�, otherwise Ct+1=Ct.
This is the Metropolis update scheme �22� with inverse tem-
perature � and cycle length as energy. Detailed balance
holds just as for the standard Metropolis algorithm �23�.

Throughout this paper, we take M as the set of short �iso-
metric� cycles of the given graph. A cycle S is short if for all
nodes x and y on S, a shortest path between x and y lies also
in S. As a nonshort cycle has at least one shortcut between
two of its vertices, it can be decomposed into two shorter
cycles that overlap on the shortcut. Typically for each non-
short cycle C one finds cycles S and C� such that S is short
and �C��� �C�. Applying the decomposition recursively, one
sees that every cycle C occurs in a sequence 0 ,C1 ,C2 , . . .
with Ci � Ci+1�M and �Ci�� �Ci+1�. Thus taking as the pos-
sible “moves” M, the set of short cycles, not only ensures
that every cycle can be reached �ergodicity�. In this case, the
resulting energy landscape does not have any local minima
other than the unique global minimum, which is the empty
graph at E=0. There are exceptional graphs where the de-
composability does not hold for one particular cycle. The
exceptions appear to be irrelevant for the applications here as
our numerical results remain unchanged when M is ex-
panded to include more and longer �nonshort� cycles.

Having defined the algorithm, we are going to study the
formation of cycles as networks are growing under various
attachment rules. To this end, we let the network grow to a
certain size, keep it fixed while estimating the statistics of
cycles, then let the network grow to a larger size, estimate
the statistics again, and so forth. We first apply this proce-
dure to a set of networks where exact computation of c�h� is
feasible. The pseudofractal scale-free web �PF� by Dorogovt-
sev and Mendes �24� grows deterministically by iterative tri-
angle formation as follows. Start at generation n=0 with two
vertices connected by an edge. To obtain generation n+1, for
each edge xy present in generation n add a new vertex z and
the edges xz and yz, such that each existing edge xy becomes
part of an additional triangle xyz. The calculation of c�h� is
particularly simple because each cycle has a unique prede-
cessor in the previous generation, given by following direct
links xy instead of the additional “detours” via z. A cycle of
length h in generation n produces 2h cycles in generation n
+1 as the result of h binary decisions to follow the detour or
the original direct edge. The histogram of cycle lengths iter-
ates as

c�n+1��h� = �
l=3

h � h

h − l
c�n��l� �2�

for l�4 and c�n+1��3�=c�n��3�+3n. The result of the numeri-
cal iteration of these equations up to generation n=8 is
shown in Fig. 2, together with the results from the Monte
Carlo method. The relative deviation of the sampling esti-
mate of c�n��h� from the exact value is below 25% for all
cycle lengths h and all generations n. In particular, the
unique cycle of maximum length hmax=3	2n is detected.
The method approximates the true numbers of cycles with
high precision.

Next, we apply the algorithm to study the system size
dependence of the cycle length distribution of stochastically
growing artificial networks. All networks initiate as two ver-
tices coupled by an edge. The networks grow by iterative
attachment of vertices until a desired size N is reached. At
each iteration, one new vertex z and two new edges xz and yz

FIG. 1. �Color online� �a� Summation of two cycles resulting in
a new cycle. Edges contained in either addend are contained in the
sum. Edges present in both addends �dashed lines� cancel out. �b�
Example of a sum of two cycles that is not a cycle itself.

FIG. 2. Number c�h� of cycles of length h estimated by the MC
sampling algorithm �thick dashed curves� and the exact values from
iterating Eq. �2� �thin solid curves�. Studied networks are genera-
tions n=4, . . . ,8 �system sizes N=42, 123, 366, 1095, and 3283
vertices� from the deterministic growth model �2�. The supplement
�23� describes the generation of the histograms from runs at differ-
ent temperatures.
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are generated. We are interested in the influence of different
attachment mechanisms on the cycle length distribution. To
this end, we consider the following probabilistic rules for
selection of the nodes x and y to which the new node z
attaches. Independent homogeneous �IH� attachment: Draw x
and y randomly �with equal probabilities� and independently
from the set of nodes; if x=y, discard this choice and repeat.
Independent preferential �IP� attachment: Draw an edge ran-
domly �all edges having equal probability� and take as x one
of the end vertices chosen with equal probability; draw an-
other edge to find y analogously; if x=y, discard this choice
and repeat. Triangle forming preferential �TP� attachment:
Draw an edge randomly and take its two end vertices as x
and y. Triangle forming homogeneous �TH� attachment:
Draw an edge randomly, take x and y as its end vertices, and
accept this choice with probability 1 / �deg�x�deg�y��; other-
wise reject and repeat.

Rule IP is equivalent to choosing nodes with probability
proportional to degree �4�, so-called preferential attachment.
It generates scale-free networks with degree exponent �=3.
Rule TP implements preferential attachment with the addi-
tional constraint that x and y be connected; it is the stochastic
version of the pseudofractal �PF� scale-free web �25� defined
above. The resulting networks are scale-free with �=3. The
homogeneous attachment rule �IH� �4� leads to networks
with exponentially decaying degree distribution ��=��. The
fourth rule introduced here combines triangle formation with
homogeneous �TH� attachment by explicitly canceling out
the degree dependence in the selection probability. We have
checked that this rule generates an exponential degree distri-
bution.

The mean-cycle length increases algebraically with sys-
tem size,

�h� � N�, �3�

with the exponent �� �0,1� depending on the attachment
rule �23� The variance of the cycle length distribution in-
creases algebraically with the same exponent �. Therefore
the ratio of mean and variance is practically constant �23�.
Considering the degree exponent � and the cycle growth
exponent � for each type of network �Table I�, several ob-
servations are worth mentioning. Homogeneous attachment
with triangle formation leads to a nontrivial cycle growth
exponent ��0.72 even in the absence of scaling in the de-
gree distribution �=�. Networks grown stochastically with

triangle formation and preferential attachment �rule TP� have
the same exponent ��0.64 as the deterministic counterpart
�rule PF� while the degree exponents under these two rules
are clearly different. Analogously, in the absence of triangle
formation �rules IH and IP� the same cycle growth exponent
��1.0 is obtained regardless of the degree exponents �
� 	3,�
.

Finally, we consider cycles in an evolving real-world net-
work. The Internet at the level of Autonomous Systems is a
growing scale-free network with degree exponent �
=2.22�1� �26,27�. Here we analyze snapshots of the network
with sizes from N=3015 nodes �November, 1998� to N
=10 515 nodes �March, 2001� �28�. We find that during this
time the mean-cycle length grows from 264.9 to 757.8. As in
the artificial growing networks, the growth is algebraic. The
growth exponent is estimated as �=0.76�4� by a least
squares fit. More detailed analysis is performed on the num-
ber c�h ,N� of cycles of given length h at system size N, cf.
supplement �23�. We observe a scaling

c�h,N� � N
�h�, �4�

with an exponent 
�h� that depends linearly on h with a slope

TABLE I. Networks from different attachment rules and the resulting scaling exponents � for the tail of
the degree distribution and � for the growth of the cycle lengths. The last column displays the symbol used
in the figure in the supplement �23�.

Rule Indep/Tri Hom/Pref � �

IH �8� Independent Homogeneous 1.010�4� � �

IP �8� Independent Preferential 0.969�5� 3 �

TH Triangle Homogeneous 0.722�5� � �

TP �24� Triangle Preferential 0.644�9� 3 �

PF �23� Triangle Preferential 0.635�1� 2.59 �

Internet 0.76�4� 2.22�1� �

FIG. 3. Evolution of cycles in the growing Internet at the Au-
tonomous Systems level. �a� The number of cycles of given length
h as a function of system size N for h=10,20,30, . . . ,100 �squares,
bottom to top�. The straight lines are best fits of the form c�h ,N�
�N
�h�. �b� Growth exponents 
�h� as defined in Eq. �4� obtained as
slopes of the fitted lines in �a�. Error bars of exponents indicate
standard error from the fit. Dashed lines have slopes 1.0 and 0.9.
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close to unity. Figure 3�b� shows that


�h� � h �5�

for not too small lengths h�10. The scaling behavior is in
qualitative agreement with the prediction from the first order
approximation by Bianconi et al. �29�, assuming that the
Internet is a random network with a given scale-free degree
distribution.

Many more results have been obtained that are not dis-
cussed in the present paper. Studying the influence of geo-
metric constraints on networks, we have found the influence
of the embedding dimension d on the cycle-length distribu-
tion of random graphs. While lowering d introduces locality
and thus favors the existence of small cycles, the mean-cycle
length �h� is practically invariant under changing dimension
d�1. Further, the present sampling method is applicable to
arbitrary properties of cycles in graphs, including functions
that depend explicitly on edge and node labels.

In summary, we have analyzed the evolution of cycles in
growing networks. While the mean-cycle length grows with

a characteristic exponent �, the relative width of the length
distribution tends to zero as the system size increases. Thus,
in agreement with an earlier speculation �18�, the exponent �
is found to be the most relevant quantity for the evolution of
cycle space. In the scale-free model by Barabási and Albert
�4� as well as the growth model with random homogeneous
attachment, cycles are space filling ��=1.0�, i.e., cycle
length is proportional to system size. In model networks with
explicit formation of triangles and in the Internet, however,
cycles grow slower than the system as a whole. This class of
networks having ��1 also includes single-scale networks
with �=�. Our study suggests that the cycle growth expo-
nent serves as a useful characterization of growing networks
independent of the degree exponent �. An open question
concerns universality. Can � be altered continuously by tun-
ing parameters or does it assume distinct values, dividing the
set of growing networks into universality classes?
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